حل چند جمله ای معادلات انتگرال - دیفرانسیل فردهلم خطی مرتبه ی بالا با ضرایب ثابت
thesis
- دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر
- author ریبوار بدوی
- adviser اسماعیل بابلیان
- Number of pages: First 15 pages
- publication year 1388
abstract
چکیده ندارد.
similar resources
حل عددی معادلات انتگرال دیفرانسیل خطی فردهلم مرتبه بالا
این پایان نامه شامل چهار فصل می باشد. در فصل اول مفاهیم معادلات انتگرال و معادلات انتگرال-دیفرانسیل را معرفی خواهیم کرد. فصل دوم به ارائه برخی روش های حل معادلات انتگرال و معادلات انتگرال-دیفرانسیل اختصاص داده شده است.چندجمله ایهای لژاندر در فصل سوم برای حل معادلات انتگرال-دیفرانسیل تفاضلی خطی فردهلم مرتبه بالا مورد استفاده قرار گرفته است. سرانجام در فصل چهارم، یک روش ماتریسی عملی برای پیدا کرد...
15 صفحه اولروش هم محلی ژاکوبی با مرتبه بالا برای معادلات دیفرانسیل کسری تک مرتبه ای غیر خطی
This article has no abstract.
full textحل معادلات انتگرال-دیفرانسیل-تفاضلی خطی و معادلات انتگرال-دیفرانسیل فردهلم خطی مرتبه بالا با استفاده از روش هم محلی
در این پایان نامه یک روش هم محلی چبیشف برای حل معادله انتگرال-دیفرانسیل - تفاضلی خطی آمیخته به طوریکه ایکس کوچکتر مساوی صفر و m بزرگتر مساوی n تحت شرایط آمیخته و هم محلی لژاندر برای حل معادله انتگرال دیفرانسیل فردهلم خطی مرتبه بالاتر تحت شرایط آمیخته ارائه شده است. در این دو روش معادله ا با شرایط 2 و معادله 3 با شرایط 4 به معادله ماتریسی که متناظر با یک دستگاه معادله جبری خطی است تبدیل می شوند....
15 صفحه اولحل معادلات انتگرال-دیفرانسیل خطی فردهلم-ولترا از مراتب بالا با استفاده از چند جمله ای های چبیشف
چکیده ندارد.
15 صفحه اولحل معادلات انتگرال فردهلم خطی با مرتبه بالا با ضرایب متغیر با استفاده از چندجمله ای های لژاندر
در این پایان نامه جواب عددی معادلات انتگرال – دیفرانسیل را بوسیله چند جمله ای های لژاندر بدست آورده و ضرایب را چنان محاسبه می کنیم که تقریبی برای باشد که این روش معادلات انتگرال را به یک دستگاه معادلات خطی تبدیل می کند این روش یک جواب تقریبی برای معادلات – انتگرال – دیفرانسیل خطی به دست می دهد و قادر به حل معادلات انتگرال – دیفرانسیل غیر خطی نیز هست. در فصل اول این پایان نامه تاریخچه و تعریفی ...
15 صفحه اولبهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
full textMy Resources
document type: thesis
دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023